In statistics, the coefficient of multiple correlation is a measure of how well a given variable can be predicted using a linear function of a set of other variables. It is the correlation between the variable's values and the best predictions that can be computed linearly from the predictive variables.
The coefficient of multiple correlation takes values between 0 and 1. Higher values indicate higher predictability of the dependent variable from the independent variables, with a value of 1 indicating that the predictions are exactly correct and a value of 0 indicating that no linear combination of the independent variables is a better predictor than is the fixed mean of the dependent variable.
The coefficient of multiple correlation is known as the square root of the coefficient of determination, but under the particular assumptions that an intercept is included and that the best possible linear predictors are used, whereas the coefficient of determination is defined for more general cases, including those of nonlinear prediction and those in which the predicted values have not been derived from a model-fitting procedure.
A multiple correlation coefficient (R) yields the maximum degree of liner relationship that can be obtained between two or more independent variables and a single dependent variable. R2 represents the proportion of the total variance in the dependent variable that can be accounted for by the independent variables.
ICT workshop poster
No comments:
Post a Comment